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ABSTRACT

Primary objective of this study is to develop a method for prediction of failure of
thin beryllium sheets that undergo complex states of stress. Major components of the
research include experimental evaluation of strength parameters for cross-rolled beryllium
sheet, application of the Tsai-Wu failure criterion to plate bending problems, development
of a high order failure criterion, application of the new criterion to a variety of structures,
and incorporation of both failure criteria into a finite element code.

A Tsai-Wu failure model for SR-200 sheet material is developed from available
tensile data, experiments carried out by NASA on two circular plates, and compression
and off-axis experiments performed in this study. The failure surface obtained from the
resulting criterion forms an ellipsoid.

By supplementing experimental data used in the the two-dimensional criterion and
modifying previously suggested failure criteria, a multi-dimensional failure surface is
proposed for thin beryllium structures. The new criterion for orthotropic material is
represented by a failure surface in six-dimensional stress space. In order to determine
coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial
experiments are required. Details of these experiments and a complementary ultrasonic
investigation are described in detail. Finally, validity of the criterion and newly determined
mechanical properties is established through experiments on structures composed of SR-
200 sheet material. These experiments include a plate-plug arrangement under a complex
state of stress and a series of plates with an out-of-plane central point load.

Both criteria have been incorporated into a general purpose finite element analysis
code. Numerical simulation incrementally applied loads to a structural component that is
being designed and checks each nodal point in the model for exceedance of a failure
criterion. If stresses at all locations do not exceed the failure criterion, the load is
increased and the process is repeated. Failure results for the plate-plug and clamped plate
tests are accurate to within 2%.
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1. INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

In the design of complex structures, material selection is usually based upon a
variety of physical characteristics, such as strength, and the interaction between materials
within the system. Beryllium possesses a unique combination of properties that makes it
desirable for a number of applications, especially in the aerospace industry. For example,
no other material matches beryllium's advantageous combination of high modulus and low
density. Due to this characteristic, beryllium is manufactured in a sheet form that is used
extensively to encase spacebound payloads and for structural purposes in the space shuttle
itself (see Fig. 1). Integral components of satellite structures that are manufactured from

beryllium sheets serve structural, reflective, and thermal functions (see Fig. 2).

s

FIG. 1. Structural Application of Beryllium

Substantial research efforts toward property identification and material
characterization of beryllium sheets were made in the late 1960s and early 1970s by
commercial firms and governmental agencies. Subsequently, beryllium components made
from beryllium sheet were successfully applied in a number of aerospace structural
applications. At the end of this period, the number of technical publications related to



research on use of beryllium as a structural element diminished considerably. In 1981, a
conical beryllium section of the Insat C spacecraft failed catastrophically during certification
procedures for flight as a Space Transportation System payload. Failure was attributed to
excessive out-of-plane stresses. This unexpected failure rekindled research interest and
concern for use of beryllium as a structural element (Henkener et al. 1991). If a beryllium
sheet component fails in a spacecraft structure, especially by out-of-plane loadings, the
results could be catastrophic since the brittle nature of the material usually causes the
formation of fragments that, subsequently, may invoke human injury and jeopardize the
structural integrity of the spacecraft. NASA, whose primary motivation is the safety of the
crew, is concerned about the behavior of the material under a variety of loadings and

especially under complex states of stress.

FIG. 2. Optical/Reflective Application of Beryllium

It became apparent that the theoretical and experimental work accomplished in the
1960s and 1970s provides inadequate information for establishing design guidelines. This is
due to two factors: the material properties of beryllium are not constant in the through-
thickness direction and the criteria that are most commonly used for predicting failure
consider only two-dimensional analyses. Moreover, these criteria neglect normal and shear
stress interactions.



NASA, the aerospace industry, and the beryllium manufacturing companies are
showing a renewed interest for development of a failure prediction method that can be used
in design of safe beryllium sheet structures. Most of the published research dedicated to
beryllium as a structural material approaches the subject from a microscopic point of view.
By contrast, the current effort considers the macroscopic nature of the material. Results
obtained are compared, whenever possible, with those obtained by other investigators who
use either a microscopic or a macroscopic approach.

The goal in what follows is to describe two numerical techniques for failure
prediction of beryllium sheets that have been verified by laboratory experiments. The first
technique uses laboratory tests to establish coefficients of the well-known Tsai-Wu failure
criterion. Applicability of this theory is measured through a series of tests on beryllium
plates deformed by a central point load. Second, a new failure prediction criterion is
presented that takes into account multi-dimensional states of stress. These stresses include
normal and shearing stress at failure. Various combinations of these stresses are used to
calculate the necessary interaction coefficients that define an equation of failure for cross-
rolled beryllium. After determining these coefficients, the new criteria is applied for
prediction of failure of several other experimental tests.

The remainder of this chapter outlines the physical, thermal, electromagnetic, and
mechanical properties of beryllium. Chapter 2 reviews existing criteria that are used to
predict failure. Chapter 3 presents a new, multi-dimensional failure criterion that
incorporates closure of the cubic polynomial strength tensor. The criterion calls for a
number of principal and interaction strength coefficients. Chapters 4 through 7 give an
account of the experimental investigations conducted for cross-rolled beryllium sheets.
More specifically, chapter 4 reviews experimental accomplishments of other investigators.
Some of the failure coefficients for the proposed criterion are based on results of these tests.
Chapter 5 describes uniaxial and shear tests used to compute the principal strength
coefficients, while chapter 6 includes experiments for determining the interaction
coefficients. The next chapter deals with non-destructive evaluations: hardness and
ultrasonic tests. The former provides a verification of the uniaxial tensile testing while the
latter provides an estimation of the variation of the elastic modulus in the through-thickness
direction. The coefficients obtained from experiments described in chapters 5 and 6 are
refined via constrained and asymptotic conditions derived from the criterion. The result is a
failure surface in six-dimensional stress space. Certain combinations of stresses and the
resulting failure surfaces are presented. Application of the failure criterion is provided in
chapter 8 for two distinct cases: a plate-plug arrangement subjected to a complex state of
stress and a clamped plate subjected to a point load.



1.2 PHYSICAL PROPERTIES

Since material properties affect the behavior of beryllium sheets under load, a brief
survey of some of the natural and physical properties are presented and compared with
those of other structural metals. Properties discussed in what follows include: material
preparation, density, elastic moduli, thermal properties (such as specific heat, coefficient of
thermal expansion, and thermal conductivity), and X-ray transparency. The discussion is
restricted to cross-rolled beryllium sheet although some of the properties presented may be
applicable to other forms of beryllium.

1.2.1 Cross-Rolled Sheet Preparation

SR-200 cross-rolled sheet is manufactured from high purity SR grade powder.
Initially, the fabrication consists of hot pressing (simultaneous application of heat and
pressure) high purity beryllium powder contained in a suitable die into vacuum hot-pressed
block. Subsequently, the block is hot worked at temperatures ranging from 200 to 590° C
(400 to 1,100° F) by rolling at reductions of 3:1 to 13:1. The SR-200 sheet is formed by
rolling at 90° angles (Brush Wellman 1986; Cooke et al. 1971).

In what follows, references to beryllium are equivalent to references of cross-rolled
beryllium sheet unless otherwise stated.

1.2.2 Atomic Structure

The microstructure of beryllium is hexagonal close-packed (HCP) (Asceland 1989).
Mechanical properties, as with most such lattice metals, are anisotropic. Two independent
bonding systems predominate in beryllium structures: a metallic bond that connects atoms
within a basal plane and a metallic-covalent bonding system that acts normal to the basal
plane. The two bonding mechanisms act independently from each other. An indication of
this is the fact that Poisson's ratios are close to zero for certain directions. The former of
the two bonding systems accounts for ductile behavior of the material when stress is applied
parallel to the basal plane while the latter system accounts for the brittle nature of beryllium
when stress is applied normal to the basal plane (Pollock 1977).

1.2.3 Density

The density of beryllium is 1.85 g/cm3 (0.067 Ib/in.3) (Asceland 1989), which makes
it the least dense structural metal. An exception is magnesium that has a density of 1.76
g/cm3 (0.064 Ib/in.3). A comparison of densities for a number of structural metals is
provided in the histogram of Fig. 3.
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FIG. 3. Density Histogram for Selected Metals

1.2.4 Elastic Moduli

A measure of stiffness is given by Young's modulus and elastic moduli for isotropic
and anisotropic material, respectively. Cross-rolled beryllium sheets possess orthotropic
material properties. The in-plane moduli of elasticity, £, and Ey, for SR-200 cross-rolled
beryllium sheets have magnitudes of approximately 297 GPa (43 x 103 ksi) and 303 GPa
(44 x 103 ksi), respectively. The out-of-plane elastic modulus E, and, thus, the out-of-
plane stiffness, is even higher at 345 GPa (50 x 103 ksi), which makes the material desirable
for applications where out-of-plane deformations need to be minimized (Marder 1986).
This is important since a high stiffness in the direction normal to the plane of the sheet
coupled with low Poisson's ratios implies relatively small out-of-plane deformation and,
thus, high dimensional stability. Specific stiffness or the modulus-to-density ratio provides
another measure of the commendable properties of beryllium (Fenn et al. 1967). For simple
geometric configurations, the deflection of a structure is inversely proportional to the
specific modulus of a load free structure deflecting under its own weight. For specialized
engineering applications, such as optical supports, it is necessary to minimize distortions.
This is obtained by using a high specific modulus material, such as beryllium, in order to
increase dimensional stability of the overall structure.



Fig. 4 compares in-plane Young's moduli for selected structural materials.
Beryllium's in-plane stiffness is one and one-half times greater than that of steel and several
times higher than that of other, so-called, lightweight materials, such as aluminum, titanium,
and graphite/epoxy composites.
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FIG. 4. Histogram of Young's Modulus for Various Metals

1.3 THERMAL PROPERTIES

1.3.1 Specific Heat

Beryllium has an average specific heat of 18.3 kJ/(kg K) (0.46 BTU/Ib-°F), the
highest among common structural materials (Brush Wellman 1986). The highest specific
heat value occurs at its melting point of 1,285°C (2,345°F) (Marder 1986). This is very
important due to the fact that the low density and high heat capacity combine to make
beryllium a lightweight, high efficiency, heat pool. At the same time, the high melting point
of beryllium allows the structure to withstand melting. Striking applications of these
characteristics of beryllium are found in high performance aircraft and the space shuttle
brake system.

1.3.2 Coefficient of Thermal Expansion

A wider view of the thermal properties of beryllium may be obtained by examining
the coefficient of thermal expansion. The value at room temperature is 11.5 x 10-6/°C (6.4
x 106/°F), the lowest for any structural metal (Marder 1986). Thus, beryllium has a



combination of high specific heat, which makes it difficult to raise the temperature, and a
low coefficient of expansion, so that even when the temperature is elevated, less elongation
takes place than for other metals.  This combination gives dimensional stability to
structures, especially in applications where energy may be absorbed or radiated, as in
satellite structural members that go in and out of solar shadows during orbit. As an
example, the stiffeners of the solar array on RCA Spacenet satellites were constructed of
brazed beryllium. Primary considerations in the design were light weight, accuracy of
pointing, and dimensional stability during changes in solar shadowing (Marder 1986).

It should be mentioned that the coefficient of thermal expansion varies with
beryllium oxide (BeO) content and, consequently, from grade-to-grade of beryllium.
However, increasing BeO content reduces the coefficient of thermal expansion and,
therefore, increases stability.

1.3.3 Thermal Conductivity

The thermal conductivity of beryllium, 165 W/(m K) (104 BTU/Ib-ft2-°F), is
relatively high compared to that of steel, 43 W/(m K) (27 BTU/Ib-ft2-°F), and is somewhat
less than that of aluminum, 203 W/(m K) (128 BTU/Ib-f2-°F) (Marder 1986). This
property allows heat to be conducted readily and, thus, temperature differences between
various locations in a structure are ameliorated. Again, as heat is conducted away from
higher temperature regions, thermal gradients are reduced, and dimensional stability of the
structure is improved.

1.4 TRANSPARENCY TO ELECTROMAGNETIC RADIATION

Not only does beryllium conduct heat well, but it also does not hinder passage of
electromagnetic radiation. For example, beryllium is used in X-ray tubes as a window
through which x-rays readily pass. A mechanical vacuum seal is maintained between the x-
ray tube and the environment. In general, beryllium absorbs very little x-ray, gamma,
electron, or other electromagnetic radiation. The transmitted x-ray intensity, 7, is described
by the equation

$72
T 1)

where, I, is the intensity of the incoming beam in percent, -m/p is the mass absorption
coefficient (cm2/g), 5 is the density (g/cm3), 4 is the thickness of the material (cm).

The quantity m/p is known as the mass absorption coefficient that not only depends
on the absorbing material, but also upon the x-ray wavelength. The advantage of using



beryllium is that 95% of the original intensity is transmitted, as compared to 3.3 x 10-8%
and 4.4 x 10-8% for aluminum and titanium, respectively.

Beryllium is also an excellent reflector of infra-red (LR.) radiation. It is 96%
reflective at 10.6 m, and can be an effective optical component in IR. systems (Grant
1983). Often, advantageous physical properties are useful only when accompanied by
sufficient mechanical strength; i.e., beryllium would not be used as an x-ray window if it
were not strong enough to withstand the stress imposed by having a vacuum on one side
and air pressure on the other.

To summarize, Table 1 lists some of the important physical properties of beryllium.

TABLE 1. Physical Properties of Beryllium

Property Value
) (2)
Atomic number 4
Atomic weight 9.02
Specific gravity 1.85 g/cm3
Melting point 1,285°C
Specific heat 1.83 J/°K
Thermal conductivity 165 W/(m K)
Coefficient of thermal expansion 11.5 x 10°6/ °C
Reflectivity
Optical 50%
Ultraviolet 55%
Infrared 98%
Sonic velocity 12.6 x 103 m/s

1.5 MECHANICAL PROPERTIES

Mechanical properties of beryllium vary considerably from grade-to-grade (Grant
1983). References to beryllium in the following chapters only consider properties of SR-
200 cross-rolled beryllium sheet due to its widespread use in space applications. Table 2
summarizes elastic properties for SR-200 sheet that has a thickness of 1.96-mm (0.077-in.).
Testing used to obtain most of these parameters was conducted by Lockheed Missiles and
Space Company (Fenn et al. 1967). A number of these values have been recently verified
for 2.54-mm (0.10-in.) thick cross-rolled beryllium sheet as reported in later chapters of this
report and elsewhere (Roschke and Papados 1989; Henkener et al. 1991). Identical in-
plane uniaxial mechanical properties for the 1.96-mm (0.077-in.) and the 2.54-mm (0.10-in.)



thick SR-200 sheet are observed. Table 3 lists yield and ultimate failure strengths (Fenn et
al. 1967).

TABLE 2. Elastic Properties of 1.96-mm (0.08-in.) SR-200 Sheet (Fenn et al.
1967)

Direction of Loading Elastic Modulus Poisson's Ratio
(GPa)
9] (2) (3)

Longitudinal 298.7 vy, = 0.0768
vi3 = 0.0137
Long transverse 293.6 vy = 0.0752
vyy = 0.0190
Short transverse 3475 v3; = 0.0162
(Through-thickness) vy, = 0.0230

TABLE 3. Uniaxial Strength Properties of 1.96-mm (0.08-in.) SR-200 Sheet
(Fenn et al. 1967)

Direction of Loading Yield Stress Ultimate Stress
(MPa) (MPa)
@3] (2) 3)
Longitudinal

Tension 3834 537.6

Compression 379.2 659.1
Long transverse

Tension 386.1 564.0

Compression 382.7 591.5
Short transverse

Tension 200.0

1.6 DISADVANTAGES IN USING BERYLLIUM

Despite numerous advantages that beryllium provides as a structural material, a
number of disadvantages need to be kept in mind. One of the primary drawbacks of
beryllium sheet material is that it exhibits brittle behavior when loaded to failure under
complex states of stress. For example, in regions of stress concentration beryllium fractures
with little or no evidence of plastic deformation, i.e., the material is not capable of
redistributing localized stresses by gross deformation before cracking occurs. In addition,
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beryllium lacks toughness when exposed to high strain rates due to its inability to absorb
energy by plastic deformation prior to fracture (Kojola 1967).

Another disadvantage in using beryllium is the fact that it can not be mechanically
machined without special precautions. This is due to toxicity of the metal; i.e, it has been
shown by experiments on laboratory animals that inhaling beryllium dust can cause chronic
diseases. In addition, machining can cause microscopic surface flaws that radically affect
the strength of the material (Henkener et al. 1991). Depending on the stress state, the
reduction in strength can be dramatic in the sense that the ultimate strength becomes equal
to the yield strength.

Finally, the cost of beryllium cross-rolled sheets is considerably higher than that of
other structural metals. Important economic factors in the manufacturing process include
mining, purification of beryllium powder, forming hot press blocks, cross-rolling into
beryllium sheets, and costly chemical etching and cutting into desired geometrical shapes.
Nevertheless, use of beryllium sheet material is often competitive in space applications when
all economic factors are taken into account.



2. HISTORICAL BACKGROUND

2.1 OBJECTIVES

Contemporary applications of failure criteria frequently incorporate two-dimensional
or simplified three-dimensional methodology for prediction of failure stresses and/or strains.
Motivation behind the development of a new multi-dimensional failure criterion is due
mainly to the lack of a sufficiently accurate mathematical tool that accounts for the behavior
of brittle material with anisotropic properties. Such a criterion should be able to provide a
reliable maximum load estimate so that design of the structure is not penalized in terms of
excessive weight requirements. The failure criterion developed in the following chapters is
represented by a fracture surface in a six-dimensional stress space.

The term "brittleness" is taken here to refer to material failure which is preceded
with either negligible or, preferably, no inelastic deformation. Moreover, development of at
least one separation surface within the body is required. By definition, first-order criteria
involve only first-order terms, quadratic criteria consider combinations of first and second-
order terms, and higher-order criteria include cubic-order terms. Incorporation of cubic
terms usually yields a non-convex, non-closed, mathematically complex surface.

2.2 ATTRIBUTES OF A FAILURE CRITERION

In general, criteria for failure prediction of a brittle anisotropic material are required
to satisfy the following (Roschke and Papados 1989; Gol'denblat and Kopnov 1965; Hill
1950):

(a) Stability conditions and a smooth, continuous, convex, non-singular surface are
required to satisfy uniqueness.

(b) The criterion should be invariant with respect to coordinate axis transformations.
(c) The failure surface resulting from the criterion should be a potential function, a
function that is independent of the loading path.

(d) Strength interaction coefficients should be used that depend on mechanical
properties of the material at different ultimate strengths.

(e) Applicability of the criterion for multiaxial and complex states of stress is
necessary.

(f) Only a finite number of tests can be required to evaluate strength coefficients.
(g) Each complex state of stress should be described by a combination of strength

parameters, not only by one component of the strength tensor.
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A large number of theories have been proposed that deal with failure prediction.
None fully satisfies these conditions. Several of the most important and influential failure
theories are presented in the following sections.

It is considered expedient, at this point, to differentiate between failure and yield.
Early criteria, such as that of Rankine and Coulomb (Karr and Das 1983) predicted the
stress levels at which yielding begins. At that time most structures were designed to
perform up to the onset of yield. In this case, any stress outside the loci of points defining
the yield surface was considered failure. More recent investigators define a two-
dimensional isotropic yield surface and via a flow rule, subsequently, attempt to reach the
ultimate strength limit surface (von Mises 1913) which they define as the failure surface.
Due to the confusion introduced by conflicting use of the terms yield and failure, failure is
defined here as the inability of a structure to perform at its intended design whether that is
its yield or ultimate failure limit state. Hill (1951) proposed an orthotropic yield criterion in
conjunction with a set of flow rules to define the in-plane ultimate failure surface. This was
an effort to predict ultimate failure of ductile material. These approaches, although
adequate for ductile material, fail to describe failure surfaces for non-isotropic brittle
material since no flow rule can be associated with a material that does not exhibit inelastic
or plastic deformation. Gol'denblat and Kopnov (1965) first introduced the idea of a
strength failure criterion based directly on ultimate stress. Their work forms the basis of
most modern failure criteria for brittle material.

A brief account of the major yield and ultimate failure criteria is provided in
chronological order in the following sections.

2.3 ISOTROPIC YIELDING

For isotropic material the phenomenon of yielding is independent of the orientation
of the material with respect to the applied stresses. In this case any criterion may be
expressed in the form,

Tl I3 3) 20ttt (2)

where J}, J,, and J; are the invariants of the stress tensor ojj (Karr and Das 1983). The
invariants are defined in terms of principal components of stress o,, 5,, and o, as follows:
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2.4 TRESCA'S CRITERION

Tresca proposed the first yield criterion in 1864 (Hill 1948). Influenced by the
general failure theory proposed for soils by Coulomb, Tresca suggested that yielding occurs
when the maximum shear stress reaches a certain threshold. This criterion can be expressed

in the form;
O =03 T C ettt e (6)

where g; > 0, 2 o3 are principal components of stress and C is a constant. This
corresponds to a hexagonal yield locus on the octahedral plane. Tresca's attempts to
analyze the distribution of stress in the plastic region are far from accurate and often crude
(Karr and Das 1983).

2.5 VON MISES' CRITERION

It is commonly accepted that the yield strength of metals is unaffected by application
of hydrostatic pressure that is applied either alone or in combination with the stress
situations. von Mises (1913) used this concept to simplify the yield function. Using the
deviatoric stress tensor, o,j', instead of 9%, the yield surface function, fy, becomes:

F AT 50T75) S0 e M
where,
, 1
J,=d, o, +0, &, +0, oJ,):E(o/,., 7 RO ®)
, 1
J,=d, o, d,:s(ol,j 0 4 0] ervrereeeeeeeeeee e ©®)
The deviatoric components are given by:
O S0, T O G, ettt e (10)
where
O =0,/ 320,/ 3 ettt ettt (1)

for i, j, k =1, 2, 3 and customary indicial notation (Sokolnikoff 1964). Moreover,
exploiting the assumption that ideal isotropic/plastic bodies do not exhibit the Bauschinger
phenomenon, i.e., the magnitude of yield stress is the same in tension and compression, and
since J 3 changes sign with stress reversals, it follows that Jy must be an even function of
this invariant.

In 1913 von Mises also presented a criterion, known as the J,-theory, that suggests
that yielding occurs when J 2 reaches a critical value (Karr and Das 1983). This approach
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completely neglects the influence of the ./ 3 invariant. The criterion produces a circular yield
locus on the octahedral plane. Its governing equations are:

20220,0, =040 407 =20 e (12)
or
(00, 40, -0, 4, =0V =68 oo (13)
or
(0, -0,) +(¢, ~0.,) +(<, R A (14)

where x is a constant parameter that depends on the pre-strain state of the material. The
octahedral shear stress at yield is assumed to have a value of

V2 ’

K

=5
By letting 0;° = -0, and 03° = 0, x can be correlated to the maximum shear at yield. The
uniaxial tensile yield stress, ¥, is obtained by substitution of ¢;° = ¥ and 0,° = 0 into Eq.
14. This yields:

Hencky provides a physical interpretation of this criterion (Hill 1950). Eqgs. 12-14
imply that yielding is initiated only when the elastic distortional energy acquires a critical
value. On the other hand, Huber suggests that there are two distinct cases depending upon
whether hydrostatic pressure is in tension or compression (Hill 1950). In the former case,
yielding is a function of the total distortional energy while in the latter case yielding
becomes a function of the elastic distortional energy. Nevertheless, von Mises' criterion
provides a reasonably good correlation between experimental and theoretical results for a
number of ductile metals such as copper, aluminum, iron, and mild to medium carbon steels
(Hill 1950).

2.6 HiLL'S CRITERION

von Mises' criterion is generalized by Hill in one of the first attempts to account for
tensile and compressive strength variations (Hill 1950). For orthotropic polycrystalline
metals Hill proposes the following quadratic equation for yield prediction:

F(ax —ay)z +Glo, -0,)’ +H(0'y —0',)2 +2Lo}, +2Mo?, +2Nol, =1 oo 17

where F, G, H, L, M, and N are material constants. The criterion reduces to von Mises'
theory provided that any anisotropy is insignificant, Coefficients F, G, H, L, M, and N are
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parameters that are characteristic of the material anisotropy. In view of assumed symmetry
conditions, only quadratic shear terms are included. In addition, the Bauschinger effect is
not taken into account since linear terms are excluded from the criterion. Assuming that
hydrostatic pressure, or its superposition, does not influence failure, Hill only uses the
difference of the normal components of stress.

Letting X, ¥, and Z be the principal tensile yield stresses that correspond to the three
mutually perpendicular principal axes of anisotropy, and R, S, and T be the yield shearing
stresses with respect to the same three axes, it can be shown that the coefficients F, G H,
L, M, and N should satisfy the following set of equations (Hill 1950):

%=G+H, 2F=},—1‘,+Z—I2—%
A I ]
YJ ZJ X] ”1 ......................................................... (18)
?=F+G, ZH:F+F 3
2L=—, 2M==, 2N=%

In the event that rotational symmetry is observed about the z-axis, viz. the material is in-
plane isotropic and generally quasi-orthotropic, then Eq.18 becomes:

[(G +H)o? ~2Ho, o, +(F +H)of, +2Nrfy] —Z(Gax +F0’y)o;
L2+ M 2 )+ 2F +G)o? =1

............................

The necessary and sufficient conditions for the material to be rotationally symmetric with
respect to the out-of-plane axis of rotation are:

NZGHIH=FAIH oo (20)
L=M

In the case of global symmetry and complete isotropy, the coefficients are related as
follows:
LEM=N=3F =3G =3H cccooooooonnoveeeiieiooooeooo @1

and Eq. 19 is equivalent to the von Mises’ criterion when F is equal to 7 / ¥2.

It is apparent that for the implementation of Hill's criterion the values of the yield
stresses X, ¥, Z R S and T are required. In other words, six independent experiments are
necessary for determining the constant coefficients.

For orthotropic material, such as cross-rolled beryllium sheets, Hill's criterion can be
further specialized. Considering only in-plane stresses Eq. 19 becomes:
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In the event that the material is cut at an angle a, with respect to the principal rolling
direction (Fig. 5), the transformed stress components for a tensile specimen are

o, =ocos*(a)

o, = asinz(a) ................................................................................ (23)

Ty=0 sin(a) cos( a)

where g is the tensile yield stress. In this case Eq. 19 becomes:

o= ! 24)
\/[Fsinz(a) +Gceos’(a)+H +(2N -F -G —4H)sin2(a)cosz(a)]

From Eq. 24 it can be shown that maxima and minima of ¢ can occur along the orthotropic
axes as well as in directions @4 that are given by

N-G-2
tanz(aw):N_g_zg ........................................................................ (25)
Y—-Axis Secondary Rolling
Direction
X—Axis
¢
x

N

Principal Rolling
Direction

FIG. 5. Rotation of Material Axes with Respect to Center-Line of the
Specimen

The yield stress, o, acquires maximum values in the x and y directions if N > F + 2
Hand N> F + 2H and minima in the Apgqx directions. If N<F+ 2Hand N< F + 2H
then o attains maxima in the @4y directions and minima along the x and y axes.

Hill's criterion is the first serious attempt to predict yield surfaces for non-isotropic
materials. It is very effective in predicting the behavior of ductile material, both isotropic
and orthotropic, although the original intention was to describe yielding of anisotropic
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material.  Because of the oversimplified assumptions and the omission of certain
phenomena, such as the Bauschinger effect, the criterion becomes unreliable for prediction
of yielding and, subsequently, failure of brittle material.

2.7 GOL'DENBLAT AND KoPNOV's CRITERION

A generalized tensorial form of available failure criteria is given by Eq. 26
(Gol'denblat and Kopnov 1965);

f(o;)=(Eo;)a +(F;a,0'j)ﬂ +(F,,o;ajo,‘)’ Foemd (26)

U

where, o) = 0}, oy = 022, 03 = 033, 04 =013, 05 = 0y3, Og = oy and i, j k=1 .. 6
Fj, Fyj, and Fijk are contracted equivalents of the second-, fourth-, and sixth-order strength
tensors, respectively; and o, B, and Y represent real numbers.

This is the first failure criterion proposed as opposed to yield criteria presented in
the earlier sections. It forms the basis for criteria that are subsequently developed.

Gol'denblat and Kopnov's failure criterion was applied to prediction of failure for
glass-reinforced plastics. The original generalized criterion of Eq. 26 is simplified for
application to these plastics to include only linear and quadratic terms of the stress tensor

components, and is applied to in-plane stress situations. For @ =1 and £ =0.5 it becomes
flo,) =Fg, +(E].a,,0'j)0'5 T (27)

The power term of Eq. 27 leads to complicated mathematics that do not contribute
to the generality of the criterion (Tsai and Wu 1971),

2.8 HOFFMAN'S CRITERION

An orthotropic fracture criterion that uses six stress components, and follows the
pattern of yield conditions proposed by von Mises and Hill is proposed by Hoffman ( 1967).
The criterion, which includes terms that are odd functions of the material strengths, is
described by the following equation:

Clo, -0,) +Cy(o, -0.)’ +C,(0', —ay)z +C,0, +Cs0, +C,0, +C, 7,
+Co 1, +Co1l, =1

where C; through Cy are independent coefficients that are determined from nine

e (28)

independent, uniaxial and pure shear experiments.
Letting Fy, Fy, and F,, Fey, F,, be the three orthonormal, uniaxial, tensile

and compressive strengths, respectively, and F, Fo, F, sxy the pure shear strengths, then

vz
the coefficients of Eq. 28 are given by
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C, =(F)" -(F,

(Fq)_l ) (F@)_' (e (29)
C =(F)" -(F,)"

¢ =(F,)”

G =(F.)~

¢, =(F,)”

If it is assumed that ultimate strength and fracture are one and the same for brittle
material, i.e., the terms "fracture” and "failure" are equivalent, for the case of plane stress,
ie o, = 5z = %z = 0 and Eq. 28 becomes
O'i—O'xO'y Oi ch -Fu F, _ny zfy

+ o, +—2 Ot = i (30)
FF, "EF,EE )

In three-dimensional stress space (o,, ), and 7y) Eq. 30 is represented by an ellipsoidal
surface that is symmetric about the x-y plane and has its center at

X (Fu‘Fq)+(Fw—Fcy)

¢ 2 4
Y, =(F~;F==) B —4%&&) ................................................................ 31)
Z =0

Incorporation of linear terms in Hoffman's criterion provides a first formulation for
failure prediction of brittle anisotropic material that takes into account differing tensile and
compressive strengths. Moreover, first-order tension and compression terms partly account
for the Bauschinger phenomenon. Hoffman's criterion contains symmetry and is consistent
with other well-established isotropic and anisotropic failure conditions. It provides a
smooth and adoptable formula for interpolating between basic strength data. However,
only normal interaction coefficients, such as 2C; which relates oy and o), are used.
Interaction coefficients relating normal and shear strength are omitted. Thus, the limited
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interaction terms included in this criterion do not provide the generality required for reliable
failure prediction of brittle material.

2.9 TsAI-WuU CRITERION

A more general approach is presented by Tsai and Wu (1971, 1974), who propose
the following tensor formulation for the failure surface:

f(ak)=F,.q FELO0, =4 e (32)

The difference between positive and negative stress-induced failures is described by the
linear terms. Quadratic terms of the criterion describe an ellipsoid in the stress space. The
investigators claim that if higher-order terms, such as sixth-order strength tensors, were to
be included not only does the mathematics become complicated but also the resultant failure
surface can be open ended and thereby predict infinite strengths. Therefore, cubic terms are
omitted from this criterion. The main assumptions incorporated in the Tsai-Wu criterion
are as follows:

(a) The criterion is itself a scalar equation and, thus, automatically invariant. Contrary
to Tresca's, von Mises', and Hill's criteria that require interactions among stress components
to be fixed and dependent on material properties, the Tsai-Wu criterion considers these
interactions to be independent of material properties.

(b) All stress components are expressed in tensorial notation and, therefore, their
transformations and associated invariants are well established. The criterion is invariant for
all coordinate systems (i.e. Cartesian, spherical, and cylindrical).

(c) The criterion exploits symmetry properties of the strength tensor. General
anisotropy and three dimensional Space present no mathematical difficulty.

(d) Off-axes transformation properties are well established. Therefore, behavior of
material under application of off-axes stresses can be obtained with relative ease.

(e) Stability conditions are incorporated in such a way as to ensure that the shape of the
failure surface is ellipsoidal and, at the same time, the surface is precluded from being open-
ended under conditions of hydrostatic pressure. Thus, a positive definite requirement is
imposed on both the contracted second- and fourth-order strength tensors, F; and Fj;

lj!
respectively. Conditions of constraint are as follows:

FyFy =F] 20 oo (33)

For a truly anisotropic material, the Tsai-Wu criterion requires determination of
twenty-seven independent coefficients: six for the F; tensor and twenty-one for the F,-j
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tensor. For orthotropic material, symmetry reduces the number of coefficients to twelve:
three for F; and nine for F;. These coefficients are shown in matrix form in Appendix I.

The principal strength tensor coefficients (F; and F};) can be readily calculated from
experimentally determined values of the uniaxial tensile and compressive failure strengths
(X, Y, Z X', Y’ and Z") in the three orthonormal coordinate axes. These axes are chosen to
coincide with the axes of orthotropy. Also, results of tests for the three (positive or
negative) shear failure stresses (S, R, 7), provided that the absolute value of shear strengths
is identical, are necessary. If the latter assumption is not valid then six shear strength values
are required (S, R, 7, S, R, and 7"). Eq. 35 shows the relations among strength and
tensorial coefficients.

1 1 1 1 1 1
F=~-+ Ff=y-3 b=5-7
X X Y Y Z Z
F, =0, F, =0, F, =0
/ ] ] ettt e raens (35)
b e ety et
1 1 1
£ =§S—,» Fy, =RR" Fy =F'

The interaction strength coefficients, F;5, F;3, and F,3, can be derived from a
variety of biaxial, or combined biaxial and shear experiments. For example, the following
stress combinations can be used to estimate interaction coefficient F;, (Tsai and Wu 1971,
Wu and Scheublein 1974):

—[I—P(F; +F2) _Pz(Fu +F22)]

Foro,=0,=P = -
For o, =-0,=0Q E, =_[1—Q(F, ‘EZ)Q‘2Q2(EI +Fzz)]

For o, =g, =—Q’ F,z.-..-—[]+Q(F' _EZ)Q_‘ZQ,:(F”_,_FH)] .................. (36)
For 0, =0, =0, =0.5U F, =[4_2U(F/ +F;);((//:(F,, +F, +1766)]
Foro,=c,=0,=-0.5U" F, =[4+2U(F1 +F2)2_(§]:(F” +F, +Fu)]

where P, O, and -Q’ are normal biaxial strengths, and U, and -U’ are normal-shear biaxial
strengths. Similar equations can be obtained for normal interaction coefficients related to
the (1-3) and (2-3) planes.
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Special care must be taken when determining interaction coefficients. It has been
shown that sensitivity of principal coefficients is not affected by experimental scatter, i.e.,
the magnitude of the ratio of positive to negative strength measurements does not affect the
magnitude of the tensor coefficient (Wu and Scheublein 1974). However, this is not valid
for the case of scatter in the experimental results for estimating interaction coefficients Fyj
for i #j. An optimal ratio of 0)/0; is required for this estimation. This ratio depends
primarily on the sign of the interaction coefficient, the magnitude of the biaxial strength, and
the magnitude of the interaction coefficient itself (Wu and Scheublein 1974, Wu 1974).

The main advantage of the Tsai-Wu criterion compared to earlier failure theories is
that it accounts for multi-dimensional stress space as well as different material symmetries.
Only first and second-order contracted strength tensors are incorporated in order to achieve
mathematical simplicity and to maintain a determinate number of linear equations that
provide strength coefficients. After taking symmetry conditions of the strength tensors into
consideration, twenty-seven coefficients describe the behavior of anisotropic materials.
This approach avoids incorporation of higher-order tensors that lead to mathematical
complexity in evaluating strength interaction coefficients, and indeterminacy of the linear
system of equations that arises from such an inclusion.

Although widely used, the Tsai-Wu envelope, which yields an ellipsoid, does not
give accurate correlations with experimental data for tension-tension and compression-
compression quadrants of the failure surface (Priddy 1974, Jiang and Tennyson 1989).
Furthermore, a shortcoming of this criterion is the fact that tension-tension and
compression-compression interactions may not be treated independently (Jiang and
Tennyson 1989). Application of this criterion to cross-rolled beryllium sheet has been
established for failure prediction of in-plane stresses (Mascorro et al. 1991).

2.10 PRIDDY's CRITERION

In an attempt to obtain more generality, Priddy (1974) includes products of stress
components of order greater than two in a failure criterion. For a generalized, accurate, and
complete criterion, products of stresses of order greater than two are considered in a failure
prediction equation for brittle, orthotropic material. These terms induce noncircular
octahedral shear envelopes that tend to agree with experimental findings. The general
expression describing the criterion is given by the equation:

f(o,) =Fo, +F0,0, FER 00,0, =1 oo (37
Due to complexity of the contracted sixth-order tensor only a limited number of

mathematically independent cubic terms are used. An allotropic representation of Eq. 38
leads to the following special form:

W I T 1XH +f I oo (38)
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where,
w ={c}" [4){o} =ZZ(0',10',01) Jor i, j=12,and3
1={d}{a}=3do, for i,j=12,and3 e, (39)

I={e}r{0'}=2e,cr, for i,j=12and3

II = second stress invariant; /I/ = third stress invariant; {o} = vector form of stress tensor;
W has the form of strain energy density; /4] is a matrix similar to the elastic compliance of
the material; and d|, e;, and f are undetermined scalar coefficients.

For the special case of orthotropic material that has the principal coordinate axes of
the material coinciding with the orthotropic axes, Eq. 38 becomes:
a,7), +a,15, +a,7], +b,0] +b,05 +b,0} +¢€,0,0, +C,0,0; +€;0,0;

=1+d,0, +d,0, +d,o, +(e,0, +e,0, +e,c,)(a,oz 0,0, 40,0, =Ty — Thy —ﬁ,) ... (40)

2
+f(°'10'2°'3 +27),TyT;; — O Tés —0,7; "0'317’2)

in which
a = 1
(A 2
()
b, =(F1F) ............................................................................................. (41)
F._—-F
d_ —-_c 4]
" (RF,)

are strength coefficients obtained from uniaxial strength tests, and F, and F, are the tensile
and compressive strengths, respectively, of the material. Fy(i #j) are shear strength
parameters.

In order to reduce the number of coefficients required to describe the failure surface,
approximations for both biaxial compression and tension as well as traiaxial strengths are
used. For example, the triaxial tensile strength is considered to be linearly related to the
biaxial strength. These coefficients are represented in Eq. 40 by ¢, e,, and /. Furthermore,
the following stability condition is introduced such that the failure surface is forced to be
open for the case of hydrostatic pressure:

L o3 (0] oo e (42)

It should be noted that Eq. 40 leads to a system of inconsistent equations when
shear stresses are considered. Correctly, the criterion considers positive and negative shear
strengths acting on any given plane to be identical; this yields expressions for the o
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coefficients. However, in the event that the following states of stress are imposed on a
structure Eq. 40 becomes:

State of stress: T12s To3, Ty

a7, +a,7, +a, 0, =1+2fr,, T23 T3 et (43)
State of stress: -t,,,1,,, T,

a7, +a,7, +a,7, = T T (44)
State of stress: -, ~Ty3, T)y

a7, +a,7, +a,7, T Ty Ty Ty (45)
State of stress: -t,,,~1,,, -7,

a7, +a,7, +a,, =1 T T T Ty e (46)

Sets of Eqs. 44 to 46 are inconsistent unless the value of the coefficient £ is set to zero.
Moreover, if f is set to zero then the stability condition introduced by Eq. 42 must always
be equal to zero. This yields a secondary condition that states:

() 0 e @7)

2.11 JIANG AND TENNYSON'S CRITERION

Other higher-order criteria include those of Tennyson and Elliott (1983), and Jiang
and Tennyson (1989). The former contribution is similar to that of Priddy in the sense that
independent biaxial tests are required for calculation of interaction coeffcients. Although
the latter model only considers specially orthotropic material, such as composites under in-
plane loading, it serves as a fundamental referénce for the new, proposed criterion. A
general overview of this criterion is found in Appendix II.

Jiang and Tennyson formulate a criterion for failure prediction of orthotropic
material, such as composites. They successfully employ closure of the sixth-order strength
tensor. This criterion, however, is limited to in-plane stress failure situations. Through-
thickness effects are completely neglected. Although it is effective in predicting failure for
material that exhibits extensive in-plane ductile behavior, it fails to accurately predict failure
of brittle material, such as cross-rolled beryllium sheets, under complex states of stress.



3. FAILURE PREDICTION WITH CLOSURE OF CUBIC
TENSOR

3.1 FAILURE PREDICTION WITH HYDROSTATIC DEPENDENCE

The criteria reviewed in chapter 2 are, to varying degrees, approximations of criteria
involving higher-order tensors and, consequently, overall failure predictions are not
expected to be accurate for all possible states of stress. Moreover, previously proposed
cubic polynomial formulations do not guarantee closure of the failure surface in multi-
dimensional space. Thus, situations where infinite strengths are predicted can occur that
lead to unconservative estimates of material strength.

In what follows, a new criterion is proposed to overcome these limitations. A cubic
form of the tensor polynomial surface is forced to satisfy a number of constraints that are
associated with the image of this failure surface. The function is projected onto the three
orthogonal, mutually perpendicular Cartesian planes (o}, 03), (03, 03), and (o;, 03) to
ensure satisfaction of the constraints. Coefficients of the high-order function for beryllium
sheet material are determined by a combination of laboratory experiments and numerical
simulation (see chapters 4, 5, and 6). For simplicity, only orthotropic materials are
considered. It is shown in chapter 8 that the cubic polynomial adequately describes the
failure surface for cross-rolled beryllium sheets.

3.1.1 GENERAL STATE OF STRESS

Consider a general three-dimensional solid body that is loaded by external body and
surface forces and embedded in a fixed Cartesian coordinate system (Fig. 6). Application of
these forces causes the body to deform from the unstrained state; also, a system of internal
stresses is set up at each point in the body that oppose deformation. Fig. 7 shows the nine
independent components of stress acting on a differential element located at a general point
in the solid. These components are listed in matrix form in Eq. 48.

(o} ag o}

xx xy xz
[O] =] 0 01 O e (48)
o, O, O,

Application of equations of equilibrium to the differential element reduces the number of
unique stress terms from nine to six (Sokolnikoff 1964).This reduces Eq. 48 to the
diagonally symmetric form:
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o, o, o,
[o] = To Ty Ty [ (49)
o. o, o,

Differential
Element

FIG. 6. General Body with Surface Forces
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FIG. 7. Stress Components Acting at a Point
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Also shown in Fig. 7 are the contracted notational equivalents of the second-order stress
tensor. Contracted terms are used for convenience and compact representation. That is, an
alternative, single subscript form of Eq. 49 is
o, 0Os O,
(0= 05 0 O [ (50)
o, o, o,

Often the contracted stress entries are arranged in a vector format as follows

T
{a,}z{o;,az,aj,ad,aj,a‘} .................................................................... (51)

The oj components represent a second-order tensor. However, g itself is not a first-order
tensor.

The loads on the body increase in magnitude until failure occurs. Failure is taken
here to be the ultimate stress capacity of the structure. At the time of failure the stress at a
point in the body reaches a threshold level that is taken to be the failure stress. In the
gen